

Cyflwynwyd yr ymateb i ymgynghoriad y [Pwyllgor Iechyd a Gofal Cymdeithasol ar Atal iechyd gwael - gordewdra](#)

This response was submitted to the [Health and Social Care Committee](#) consultation on [Prevention of ill health - obesity](#)

OB08 : Ymateb gan: [Dairy UK](#) | Response from: [Dairy UK](#)

Date: 5th June 2024

Dairy UK response to the Welsh Health and Social Care Committee on prevention of ill health - obesity

Dairy UK is a trade association representing dairy processors operating in the UK. Between them, our members collect and process the majority of milk produced in the UK.

We welcome the opportunity to comment on the effectiveness of the Welsh Government strategy, regulations and associated actions to prevent and reduce obesity in Wales, including consideration of:

- gaps/areas for improvement in existing policy and the current regulatory framework;
- interventions in pregnancy and early childhood to promote good nutrition and prevent obesity.

Interventions in pregnancy and early childhood

In terms of interventions in pregnancy and early childhood to promote good nutrition and prevent obesity, milk and dairy products are nutrient-rich, contributing positively to the diets of young children and providing the most calcium, iodine, riboflavin, potassium, vitamin A, vitamin D and zinc to the diets of 1–3-year-olds in the UK¹.

It has also been documented in the literature that the inclusion of dairy in the diets of infants and young children helps to improve health and developmental outcomes² without contributing to weight gain^{3,4,5}. Additionally, there is evidence that milk protein has a positive effect on bone health for both mothers⁶ and children⁷.

Iodine, of which dairy is a key source in the UK diet, is needed to make thyroid hormones which regulate foetal brain and nervous system development. While breastfeeding, a mother's calcium requirements increase considerably, and it is well known that milk and dairy foods are excellent sources of this nutrient. It has been reported that higher intake of dairy products is linked to better folate, vitamin B6 and B12 status⁸. This is of particular importance for women of childbearing age as inadequate maternal folate intake increases the risk of neural tube defects.

It is well documented that maternal weight status directly impacts subsequent birth weight. A review looking at dietary intake during pregnancy and subsequent birthweight concluded that “consumption of whole foods such as fruit, vegetables, low-fat dairy, and lean meats throughout pregnancy appears beneficial for appropriate birthweight”⁹. Furthermore, fermented dairy products such as yogurt and cheese have been shown to reduce the risk of postpartum weight retention, possibly due to their anti-inflammatory properties, or their content of bioactive peptides and probiotics which are known to have a role in weight management¹⁰. Additionally, dairy products exhibit positive impacts on glycaemic control in pregnant women which may be attributable to its content of fat, calcium, magnesium, potassium and whey protein¹¹.

Gaps/areas for improvement in existing policy and the current regulatory framework (including in relation to food/nutrition and physical activity)

Any measure introduced in this context presents a real opportunity to reinforce positive dietary behaviour and promote the consumption of nutrient-rich and healthy foods which provide the nutrients needed at all stages of life. It is for this reason that we encourage recognition of dairy's nutritional value in all existing and future policy measures in Wales.

THE VOICE OF THE DAIRY INDUSTRY

Over-simplistic nutrition policies can often have unintended consequences and impact the wrong foods. Even though dairy products contain variable amounts of calories, saturated fat, sodium and/or free sugars, they should be allowed to contribute to these nutrient intakes, as these come within a natural package comprised also of beneficial minerals and nutrients, many of which are under-consumed by the population.

In particular, significant proportions of the UK population do not meet recommended intakes for a number of essential nutrients from the food they eat. According to National Diet and Nutrition Survey (NDNS) figures¹:

- 18% of teenagers do not meet their recommended dietary intake for riboflavin;
- 15% of teenagers do not meet their recommended dietary intake for calcium;
- 24% of teenagers and 10% of adults do not meet their recommended dietary intake for iodine;
- 30% of teenagers and 17% of adults do not meet their recommended dietary intake for potassium.

Dairy products have an important role to play in addressing these inadequate micronutrient intakes:

- A 200ml glass of plain semi-skimmed milk or flavoured milk is a source of protein, calcium, riboflavin, potassium, iodine and phosphorus. In addition, plain milk is also a source of vitamins B12 and B5.
- A 30g standard portion of Cheddar is a source of protein, calcium, phosphorus, vitamin B12 and vitamin A.
- A 150g pot of low-fat fruit yogurt is a source of protein, calcium, potassium, iodine, riboflavin, phosphorus, vitamin B12 and thiamin.

Although sweetened varieties of milk and yogurt contain higher levels of added sugar than the plain ones, they can be an important source of vitamins and minerals for people who do not consume the plain varieties – in these cases, they may be necessary for achieving a healthy diet.

In addition, dairy companies have been reformulating their products over the years to meet consumer choice for lower-calorie and lower-sugar products and have made great progress in the context of Public Health England's reformulation programme: retail yogurts and fromage frais achieved a 13.5% reduction in sugar from 2015 to 2020, and retail milk-based drinks reduced their sugar by 30%, a year in advance of the 2021 target of 20%¹².

References

1. Public Health England and partners (2020) National Diet and Nutrition Survey: Rolling Programme Years 9 to 11 (2016/2017 to 2018/2019) <https://www.gov.uk/government/statistics/ndns-results-from-years-9-to-11-2016-to-2017-and-2018-to-2019>
2. Lawson Y, Mpasi P, Young M, Comerford K & Mitchell E (2024a). A review of dairy food intake for improving health among black infants, toddlers, and young children in the US. *J Natl Med Assoc* 116(2 Pt 2), 228-240. doi: 10.1016/j.jnma.2024.01.014.
3. Dougkas A, Barr S, Reddy S & Summerbell CD (2019). A critical review of the role of milk and other dairy products in the development of obesity in children and adolescents. *Nutr Res Rev* 32(1): 106–127.
4. O'Sullivan TA, Schmidt KA & Kratz M (2020). Whole-Fat or Reduced-Fat Dairy Product Intake, Adiposity, and Cardiometabolic Health in Children: A Systematic Review. *Adv Nutr* 11(4):928-950.
5. Babio N, Becerra-Tomás N, Nishi SK, López-González L, Paz-Graniel I, García-Gavilán J, Schröder H, Martín-Calvo N & Salas-Salvadó J (2021). Total dairy consumption in relation to overweight and obesity in children and adolescents: A systematic review and meta-analysis. *Obes Rev* 23 Suppl 1:e13400.
6. Perreault M, Mottola MF, Atkinson SA; BHIP study team (2022). Individualized high dairy protein + walking program supports bone health in pregnancy: a randomized controlled trial. *Am J Clin Nutr* 116(4), 887-896.
7. D I Givens (2020). MILK Symposium review: The importance of milk and dairy foods in the diets of infants, adolescents, pregnant women, adults, and the elderly. *J Dairy Sci* 103(11), 9681-9699.
8. Cifelli CJ, Agarwal S & Fulgoni III VL (2022). Association between Intake of Total Dairy and Individual Dairy Foods and Markers of Folate, Vitamin B6 and Vitamin B12 Status in the U.S. Population. *Nutrients* 14, 2441.
9. Grieger JA & Clifton VL (2014). A review of the impact of dietary intakes in human pregnancy on infant birthweight. *Nutrients* 29;7(1):153-78.
10. Yuan M, Hu FB, Li Yanping, Cabral HJ, Krupa Das S, Deeney JT and Moore LL (2023). Dairy Food Intakes, Postpartum Weight Retention, and Risk of Obesity. *Nutrients*, 15(1), 120. <https://doi.org/10.3390/nu15010120>
11. Garnæs KK, Elvebakk T, Salvesen Ø, Stafne SN, Mørkved S, Salvesen K & Moholdt T (2022). Dietary Intake in Early Pregnancy and Glycemia in Late Pregnancy among Women with Obesity. *Nutrients* 14, 105.
12. OHID (20220) Sugar reduction – industry progress 2015 to 2020.

Other sources:

- WHO. Iodine in pregnancy and lactation. [https://www.who.int/tools/elenabbc/iodine-pregnancy#:~:text=Iodine%20is%20essential%20for%20the,to%20the%20fetus%20\(2\).](https://www.who.int/tools/elenabbc/iodine-pregnancy#:~:text=Iodine%20is%20essential%20for%20the,to%20the%20fetus%20(2).)
- Zheng M, Rangan A, Olsen NJ, Andersen LB, Wedderkopp N, Kristensen P, Grøntved A, Ried-Larsen M, Lempert SM, Allman-Farinelli M & Heitmann BL (2015). Substituting sugar-sweetened beverages with water or milk is inversely associated with body fatness development from childhood to adolescence. *Nutrition* 31(1), 38-44
- O'Sullivan TA (2023). Whole fat or reduced fat dairy– which is best for kids? Results of the Milky Way Study. *Proceedings of the Nutrition Society* 82(OCE2):E48.
- Nicholl A, Deering KE, Evelegh K, Lyons-Wall P, Lawrence D, Mori TA, Kratz M & O'Sullivan TA (2021). Whole-fat dairy products do not adversely affect adiposity or cardiometabolic risk factors in children in the Milky Way Study: a double-blind randomized controlled pilot study. *Am J Clin Nutr* 114(6), 2025-2042.
- Regulation (EU) No 1169/2011 (as retained in GB)
- Regulation (EC) No 1924/2006 (as retained in GB)
- Composition of Foods Integrated Dataset (CoFID)